Gmsco

Dual-power

Automatic Transfer Switches

Camsco was established in 1979, and specializes in a wide range of electrical components and related products. We have customers in over 50 countries around the globe.

Camsco is a progressive company and we constantly challenge ourselves to develop new products to better serve our customers. Our manufacturing facillities are located in China and have ISO-9001 certification, and many of our products are also centified by internaional standards such as UL and CE.

Camsco will endeaver to provide the best products possible at reasonable prices, and is committed to fostering long-term business relationships with our customers.

Contents

W Series Dual-power Automatic Transfer Switches

I. Product codes and explanations
II. Parameters of the W-2 two-stage transfer switch
III. Parameters of the W-N3 three-stage

IV Ounter swiens
IV. Outer dimensions and installation dimensions
V. Manual operation methods and notices
VI.Switch internal wiring diagrams

W-S1 high-speed dual-power
transfer switches
I. Product codes and meanings
II. Technical Parameters
III. Outer dimensions
IV. Operation loop
V. Operation notices
VI.Installation

VIIIMaintenance, examination and storage

W2C series dual-power automatic transfer switches (ATSE)
transfer switches (ATSE)

1. W2C series dual-power automatic transfer W2C serie
II. Technical parameters
II. Technical parameters
III. Outer dimensions and installation
III. Outer dime
IV. Internal wiring diagram and notices
V. Wiring Notices
VI.Manual transfer switch

W-S Series Manual Dual-power Transfer Switches

1. Functions and characteristics
II. Outer dimensions and installation dimensions

WST-1 Controller

I. Installation dimensions

WST-3 Controller

1. Controller schematic diagram
II. Installation dimensions

W-2-3-JJ Controller (Concise)
I. Controller schematic diagram
II. Installation dimensions

Conditions for Normal Installation and Operation

The series is in compliance with the GBI4048.11 and the IEC60947-6-1 Low-voltage switchgear and controlgear-Part 6-1: Multiple function equipment - Transfer switch equipment

1) Ambient air temperature

The temperature should be no higher than $+40^{\circ} \mathrm{C}$ and no lower than -
$5^{\circ} \mathrm{C}$, with a 24 -hour average value of no more than $+35^{\circ} \mathrm{C}$.
2) Elevation

The altitude of the installation site should not be above 2000 m .
3) Atmospheric conditions

The relative humidity of the air at the installation site should not exceed 50% at a maximum temperature of $+40^{\circ} \mathrm{C}$, and higher relative humidity is only allowed at lower temperatures. The average lowest temperature in the most humid month should not be above $+25^{\circ} \mathrm{C}$, while the average maximum relative humidity should not exceed 90% Action should be taken to deal with dew condensation on the product surfaces resulting from temperature changes.
4) Pollution leve

The pollution level conforms to Level 3 in the GB/T14048.1.
5) Installation category

The switch equipment installation complies with Category III as
defined in GB/T14048.1
The transfer controller installation complies with Category II as defined in GB/T14048.1
6) Installation

Switching devices and transfer controllers can be installed vertically or horizontally in special control or distribution cabinets.
7) Use category

8) Control circuit

The rated voltage of control power Us for the control device and the transfer controller is AC $220 \mathrm{~V} / 230 \mathrm{~V} / 50 \mathrm{~Hz}$, and the operating condition is a control power voltage of $\geqslant 85 \%$ Us and $\leqslant 110 \%$ Us. In the absence of special requirements with the customer order all the transfer controllers have a preset undervoltage value of
$\sim 180 \mathrm{~V}$ and an overvoltage value of $\sim 250 \mathrm{~V}$.
9) Auxiliary circuit

The auxiliary contact circuit has a separate electrical structure of 4 normally open and 4 normally closed contacts. Refer to Table 2 for the rated values of auxiliary contacts.

Conventional thermal current Ith (A)	Rated isolation voltage Ui (V)	Rated operating current le (A)	
		AC220V	DC200V
10	300	3	0.2

Refer to Table 3 for the connection and disconnection capacity of auxiliary contacts.
Table 3

Use category	Connection			Disconnection			Operation frequency and cycle times		
	I/le	U / Ue	cos ϕ or T0.95	I / le	U / Ue	cos ϕ or T0.95	Cycle times	Operation frequency (cycles/min)	Conduction time (s)
AC-15	10	1.1	0.3	10	1.1	0.3	10	2	$\geqslant 0.05$
DC-13	1.1	1.1	6 Pe	1.1	1.1	6 Pe			

Note: Upper limit of $\mathrm{T} 0.95 \approx 6 \mathrm{Pe} \leqslant 300 \mathrm{~ms}$. The power time of $\mathrm{DC}-13$, if
T0.95 is greater than 0.05 s , should be T0.95 minimum.

W Series Dual-power Automatic Transfer Switches

W Series Dual-power Automatic Transfer Switches

The W Series belong to the PC level, and include the types of W2 and W-
N3. W-2 is a two-stage automatic transfer switch. After a switching signal is received the switch transfers power immediately from one source to the other without stopping at an OFF position in the middle. The rated current is 20A~500A.
The W-N3 is a three-stage automatic transfer switch. After a switching signal is received the switch may transfer from one power source to another immediately, or after a preset delay, or stop at an OFF position in the middle. The rated current is 20A~5000A.
I. Product codes and meaning

W-N3 three-stage automatic transfer switch (20-5000A)

1. Main circuit terminal on A power side
2. Power connection/break indicator window
3. Selection button
4. Release button
5. Square shaft for manual operation
6. Name plate

Control power termina
8. Main circuit terminal on load side
9. Main circuit terminal on B power side
10.Auxiliary contact cover
11. Protective cover

W-2 two-stage automatic transfer switch (20-500A)

1. Main circuit terminal on A power side 2. Power connection/break indicator window 3. Square shaft for manual operation 4. Name plate
2. Control power terminal
3. Main circuit terminal on load side
4. Main circuit terminal on load side
5. Main circuit terminal on B power side
6. Protective cover
7. Auxiliary contact cover

Characteristics of ATS switches:

Reliable mechanical interlock: Special eccentric selection construction
to ensure only one power source is
connected.
High arc-quenching performance: Extinguishes abnormal electrical arcing, short duration of electric arcing and low contact loss.
Multi-disc main arc contract: Enhances the contact area and pressure of contact surfaces, eliminating overheating and contact welding and extending contact lifespan.
High transfer speed: Rapid transfer between the active power and standby power, allowing a customized transfer delay for an ATS with a controller
Simple construction and small volume: Have reliable operation, a low failure rate and are convenient to install and maintain. Allow rotation with a handle during repair for convenient error detection and troubleshooting. The ATS of the W series are at PC level, are smaller than those of CB level, but have a higher current rating.

OFF position: The W-N3 three-stage transfer switch can be moved conveniently from ON to a disconnected OFF position, while the W-2 two-stage transfer switch does not have an OFF
position.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Product series code, sequence no.} \& Rated operating current (A) \& \begin{tabular}{l}
Number of poles \\
(P)
\end{tabular} \& Wiring mode \& Function code \\
\hline \multicolumn{2}{|c|}{\[
\begin{aligned}
\& \text { W-N3 } \\
\& \text { W-2 }
\end{aligned}
\]} \& \[
\begin{aligned}
\& 20, ~ 40, ~ 63, ~ \\
\& 80,100 . .
\end{aligned}
\] \& 2, 3, 4 \& F, B \& \multirow{11}{*}{I Standard type

II Automatic type}

\hline \multirow{10}{*}{Frame grading current Inm A} \& 63 \& 20, 40, 63 \& \multirow{10}{*}{| 2: Grade 2 |
| :--- |
| 3: Grade 3 |
| 4: Grade 4 |} \& \multirow{10}{*}{| F: Board front wiring |
| :--- |
| B: Board back wiring |} \&

\hline \& 125 \& 80, 100, 125 \& \& \&

\hline \& 250 \& $$
\begin{aligned}
& 160, ~ 200, ~ 225 \\
& 250
\end{aligned}
$$ \& \& \&

\hline \& 500 \& 350, 400, 500 \& \& \&

\hline \& 800 \& 630, 800 \& \& \&

\hline \& 1250 \& 1000, 1250 \& \& \&

\hline \& 1600 \& 1600 \& \& \&

\hline \& 2500 \& 1600.2000, 2500 \& \& \&

\hline \& 4000 \& 3150, 4000 \& \& \&

\hline \& 5000 \& 5000 \& \& \&

\hline
\end{tabular}

Note: 1) Switch equipment has rated operating voltage of $\mathrm{AC} 660 \mathrm{~V} / 690 \mathrm{~V}$ and $\mathrm{DC} 125 \mathrm{~V} / 250 \mathrm{~V}$, and control voltage of $\mathrm{AC} 100 \mathrm{~V}, 110 \mathrm{~V}$ and $\mathrm{DC} 110 \mathrm{~V}, 1250 \mathrm{~V}$. Other voltage specifications can be provided to special order.
2) The communicationfrom the back of the board. This is s interface details need to be specified with the order.
3) Switches of 500A or below are typically connected from the front of the board, while that of 500A and above are typically connected considered a special order.

II. Parameters of W-2 stage transfer switch

Type			W-2											
Isolation voltage			AC800V											
Impulse withstanding			8 kV											
Rated voltage			AC400V (AC660V/690V, DCl25V/250V)											
Rated current (A)			20, 40, 63			80, 100, 125			160, 200, 225, 250			350, 400, 500		
Number of throws			dual throw											
Wiring mode			board front											
Number of poles			2P	3 P	4P	2 P	3P	4P	2 P	3 P	4P	2 P	3P	4P
Weight (Kg)			4.5	5	5.5	5	6.3	6.8	6	6.6	7.3	11	15	18
Operatin current (A)	DCIIOV/125V		6	6	8	6	6	8	6	8	10	10	10	14
	ACI00V/110V		6	6	8	6	6	8	6	8	10	10	10	14
	AC200VI $220 \mathrm{~V} / 230 \mathrm{~V}$		3	3	4	3	3	4	3	4	5	5	5	7
	Short-time withstanding current		10kA						15kA			20kA		
	Rated limited short-circuit current		50kA						65kA					
	Rated limited short-circ current		100kA						120kA					
	Connection/ disconnection capacity		AC-33B (10le connected. 10le disconnected) $\cos \phi=0.35$ (When les 100A, $\cos \phi=0.45$) $\mathrm{DC}-33 \mathrm{~B}(41 \mathrm{e}$ connected. 4le disconnected)L/R=2.5ms											
		Power $A \rightarrow$ Power B Power B \rightarrow Power A	$\leqslant 0.2 \mathrm{~s}$											
	Lifespan		Electrical lifespan 6,000 cycles, mechanical lifespan 20,000 cycles											
	Operating cycle frequency		120 cycles/hour											
Auxiliary switch			2 normally open and 2 normally closed on power sides A and B ; contact capacity: AC $110 \mathrm{~V} 5 \mathrm{~A} / \mathrm{AC} 220 \mathrm{~V} 3 \mathrm{~A}, \mathrm{DC} 200 \mathrm{~V} 0.2 \mathrm{~A}$											
Accessory			Operating handle											

[^0]
III. Parameters of W-N3 stage transfer switch

Type		W-N3														
Isolation voltage		AC800V														
Impulse wilhstanding voltage		8 kV														
Rated voltage		AC400V														
Rated current		20A~63A			80A~125A			160A~250A			350A~500A			630A~800 A		
Number of throws		dual throw														
Wiring mode		board front												Board back (board front as special offer)		
Number of poles		2P	3P	4P	2P	3 P	4P	2P	3P	4P	2P	3 P	4P	2 P	3 P	4P
Weight (Kg)		5.5	5.8	6.4	6	6.5	7.2	6	7.1	7.7	11	15	17.8	25	38	43
Operatingcurrent(A)	DCIIOV/125V	6	6	8	6	6	8	6	8	10	10	10	14	12	12	12
	ACl00V/110V	6	6	8	6	6	8	6	8	10	10	10	14	12	12	12
	AC200VI $220 \mathrm{~V} / 230 \mathrm{~V}$	3	3	4	3	3	4	5	5	5	5	5	6	6	6	6
$\begin{gathered} \text { Trip- } \\ \text { ping } \\ \text { current } \end{gathered}$$(A)$	DC110V/125V	2									3			4		
	ACl00V/110V	2									3			4		
	$\begin{aligned} & \begin{array}{l} \mathrm{AC} 200 \mathrm{~V} / \\ 220 \mathrm{~V} / 230 \mathrm{~V} \end{array} \end{aligned}$	1									1.4			2		
$\begin{aligned} & \ddot{0} \\ & \text { © } \\ & \text { W } \\ & \text { E } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	Short-time withstanding current	10kA						15kA			20kA			25kA		
	Rated limited short-circuit	100kA						120kA								
	Rated limited short-circuit	50kA						65kA								
	$\begin{aligned} & \text { Connection } \\ & \text { disnonnection } \\ & \text { capacity } \end{aligned}$	AC-33B (10le connected. 10 le disconnected) $\cos \phi=0.35$ (When le $\leq 100 \mathrm{~A}, \cos \phi=0.45$) DC-33B(4le connected. 4le disconnected) L/R $=2.5 \mathrm{~ms}$														
		$\leqslant 0.2 \mathrm{~s}$														
	Lifespan	Electrical lifespan 6,000 cycles, mechanical lifespan 20,000 cycles												Electrical lifespan 3.000 cycles, mechanical lifespan 10,000 cycles		
	$\begin{gathered} \text { Operating cycle } \\ \text { frequency } \end{gathered}$	120 cycles/hour														
Auxiliary switch		2 normally open and 2 normally closed on power sides A and B ; contact capacity: AC 110 V 5A/ AC 220 V 3A, DC 200 V 0.2 A														
Accessory		Operating handle														

Note: 1) Under DC the loop operation is basically the same as that under AC conditions. Please follow the operation instructions for $A C$
2) The weight is for reference only.

[^1]
IV. Outer dimensions and installation dimensions

W-N3 80~125A
W-2 80~125A

Note: Refer to Table 6 for the dimensions of A and B in the above figure
Note: The installation dimensions and outer dimensions in the illustrations are subject to change without notice. Please check them with the actual product before installation.

3) W-N3 $160 \sim 250 \mathrm{~A}$ W-2 160~250A

Safe board distance
S1 dimension: $30 \mathrm{~mm}(400 \mathrm{~V}), 60 \mathrm{~mm}(690 \mathrm{~V})$

	Table 7	
	A	B
2P	228	113
3P	263	148
4P	298	183

Note: Refer to Table 7 for the dimensions of A and B in the above figure.
4) W-N3 $350-500 \mathrm{~A}$

W-2 350~500A

S1 dimension: $30 \mathrm{~mm}(400 \mathrm{~V}), 60 \mathrm{~mm}(690 \mathrm{~V})$

	Table 8	
	A	B
2P	287	167
3P	350	230
4P	410	290

Note: Refer to Table 8 for the dimensions of A and B in the above figure.
(1) Control circuit wiring
(5) Main circuit terminal on
load side
(2) Square shaft for manual operation
(6) Main circuit terminal on © ON/OFF indicator
standby side standby side
(4) Main circuit terminal on active side
8. Rotation range of

Note: Refer to Table 9 for the dimensions of A~F, H, $\delta 1$ and $\delta 2$ in the above figure.
6) W-N3 1600~3150A (3P)

Note: Refer to Table 10 for the dimensions of A~F, H, I, $\delta 1$ and $\delta 2$ in the above figure.
7) W-N3 $3150 \mathrm{~A}(4 \mathrm{P}) \sim 5000 \mathrm{~A}$

Note: The automatic transfer switches 3150A (4P), 4000A and 5000A have four lifting rings. Before lifting, confirm that the rings are screwed into the mounting rail of the switch and the bearing capacity of the rope is not less than 500 kg . Perform a trial lifting to confirm the center of gravity of the switch to prevent rollover or slipping.

Specitation		3150 A	4000 A	5000 A
A	3 P		915	1080
	4 P	1017	1040	1160
B	3 P		430×2	500×2
	4 P	478×2	470×2	520×2
C	135	135	230	
D	240	230	270	
E	75	75	88	
F	114			
8 1	20			
82	20			
R	800			900
H	335	350	350	

,

Note: Refer to Table 11 for the dimensions of $\mathrm{A} \sim \mathrm{F}, \delta 1, \delta 2, \mathrm{R}$, and H in the above figure.

V. Manual operation methods and notices

The connection and disconnection capacity of the W series switches is ensured under electric operation, but when they are operated manually the capacity is uncertain because the speed with which connection and disconnection is made will vary Loaded connection and disconnection in manual mode will result in excessive damage to the silver alloy contacts. Therefore, case of an electrical fault.

Note: Cut off all the power before manual operation. Make sure the operating handle is removed from the transfer switch after use.

1) Manual tripping is available for W-N3 switches only. The W-2 switches do not have this facility

After removing the operating

- handle, insert a screwdriver into
the TRIP hole on the left side and push it inwards to trip the switch. Check this in the ON/OFF indicator window

2) Input method on the A power side

Note: For W-N3 switches, perform this step after finishing step 1); for W-2 switches, perform this step before completing step 1).

Fit the operating handle on he square shaft on the hand side of the switch.

For a W-N3 switch: lift the handle upwards to conne input. For a W-2 switch: tum he handle downwards unti you hear two clicks that indicate input.

Check the ON/OFF indicator window to ensure input.

Remove the operating handle after use.
3) Input method on the B power side

Note: For W-N3 switches, perform this step after finishing step 1); for W-2 switches, perform this step before completing step 1).

on the square shaft on the left hand side of the switch.

For a W-N3 switch: insert screw driver into the SELECT hole on the right For a W-2 switch: turn the handle downwards until you hear two clicks.

For a W-N3 switch: keep pushing the screw driver and at the same time lift the input on the B side.

Check the ON/OFF indicator window to ensure input Remove the operating handle after use.

VI. Switch's internal wiring diagrams

1) W-N3 Internal wiring diagram

Two power sources are OFF.

2) W-2 (two-stage) internal wiring diagram

C= Input coil $\mathrm{SC}=$ Selection coil TC= Tripping coil

S1= Rectifier

LS= Selection switch
ATS1, ATS2=A power OFF terminal BTS1, BTS2 $=\mathrm{B}$ power OFF terminal $\mathrm{AX}, \mathrm{BX}=$ Control switch
AUX=Auxiliary switch
A1-A2= Input terminal on A power side $B 1-B 2=$ Input terminal on B power side AT1-AT2=Tripping terminal on A power side BT1-BT2=Tripping terminal on B power side

Xa1, Xa2: Internal control switch 5 C: Input coil © Si: Rectifier
AUX:Auxiliary switch
A1-A2: Input terminal on A power side B1-B2: Input terminal on B power side

Two separate contacts
A tripping device and an OFF position are provided.
The operation sequences are: $\mathrm{A} \rightarrow \mathrm{OFF} \rightarrow \mathrm{A}$ and $\mathrm{B} \rightarrow \mathrm{OFF} \rightarrow \mathrm{B}$, or $A \rightarrow O F F \rightarrow B$ and $B \rightarrow O F F \rightarrow A$

Safety design
Dustproof resin protective cover for safe operation

Tripping characteristic
Based on the operating voltage, a constant tripping function is enabled by the spring.

Operating handle
Refer to applications and options for
details.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	T
$63 A \sim 500 \mathrm{~A}$	210	34	10	22	20	$\Phi 5(3)$	$\Phi 24$	$6(7)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	t
600A~1600A	250	$38(40)$	16.1	20	15	$\phi 8$	41	$6(8)$
2000A 3000A	320	$50(52)$	19.1	25	15	$\phi 8$	50	$9(11)$
$4000 A 5000 A$	420	$50(52)$	19.1	25	15	$\phi 8$	50	$9(11)$

W 2C Series Dual-power Automatic Transfer Switches (ATSE)

I. W2C series dual-power automatic transfer switches

To meet the needs of our customers, we have recently released the W2C economic and practical PC-level two-stage automatic transfer switches. These single-pole double-throw switches have independent electromagnetic operation that features rapid transfer, compact structure and reliability

IStandard IIAutomatic Wiring mode Number of poles
Frame current Economic model
2-Two-stage
Product series code, sequence no.

II. Technical parameters

Refer to Table 1 for the switch technical parameters.

Rated voltage (V)		AC400		
Rated Impulse withstanding voltage (kV)	6			
Rated current (A)		$16, ~ 20, ~ 25, ~ 32, ~ 40, ~ 50, ~ 63 ~$		
Rated isolation voltage (V)		AC690		
Coil driving power		AC220/230V, 3.5A		
Rated limited short-circuit current (kA)		20		
Use category		AC-31B		
Lifespan (time)	Mechanical	8000		
	Electric	3000		
Number of poles		2 P	3 P	
Weight (kg)		4	4.5	
Operation cycle (s)		30		

II. Technical parameters

Figure 2 Outer dimensions and installations dimension (1) Load bus (2) Power module (3) Operating handle (4) Name plate (5) Control circuit wiring termina (5) Mechanical indication of power transfer (3) Active power bus (©) Standby power bus (c) Base

II. Technical parameters

Refer to Figure 3 for the internal wiring diagram of the switches with automatic input and recovery. In case of a voltage drop or undervoltage of the active power (A), relay K is released, the standby power (B) passes K to select the switch LS1 to activate the input coil C2, the switch transfers to the standby power B), the mechanism detects the switch between LS1 and LS2 to cut the C2 current, at the same time a standby power switch-on signal is output from the BSW terminal. When the active power (A) returns, K is closed, the active power (A) passes K and selects the switch LS2 to activate input coil C 1 , the switch ransfers to active power (A), the mechanism detects a switch between LS1 and LS2 to cut the C1 current, and at the same time an active power switch-on signal is output from the ASW terminal.

Note: A1, A2-Active power (A) input terminal (connected to AC 220 V) B1, B2-Standby power (B) input terminal (connected to AC 220V) ASW-Signal output terminal for active power switch-on BSW-Signal output terminal for standby power switch-on

K-Relay
C1, C2-Input coil
S1, S2-rectifier
Ls1, LS2-Position selection switch

$$
A 1 A_{1} \text { of } 23
$$

Figure 3 Internal wiring diagram (the switch in position B)

V. Wiring Information

1. Make sure the wiring is carried out by professionals who have a proper understanding of this manual.
2. Before wiring examine the switch to ensure that it is undamaged. Operate the switch using the operating handle and use a multimeter to check that all the phases of the sing (standby) power and liad a
3. When wiring pay special attention to the following
a. The phase sequences of the active and standby power should be verified to be the same.
Verify that the voltage of the active and standby control power are both 220VAC
b. Perform the wiring according to the labels that identify the wiring terminals of the main circuit and the control circuit.
c. Ensure the switch is grounded properly
4. Use the operating handle only for switch debugging and maintenance in the power off state. Do not use the operating handle with a load. The handle should be removed before the switch is put under power.

W-S1 High-speed Dual-power Transfer Switches

W-S1 high-speed dual-power transfer switches

The WS-1 high-speed dual-power transfer switch series are PC-level two-stage transfer switches designed to meet stringent transfer time requirements. With a transfer time of only $3-8 \mathrm{~ms}$, this series are appropriate for use when the active and standby power share the same voltage and phases.

I. Product codes and meanings

II. Technical Parameters

Type			63 A	125A	250A	500A
Rated voltage			AC660V/400V			
Rated current			63A	125A	250A	500A
Frequency			$50 / 60 \mathrm{~Hz}$			
Contact transfer duration			$3 \sim 8 \mathrm{~ms}$			
Number of throws			Dual throw			
Wiring mode			Board front			
Weight (Kg)		2 P	6.5 kg		8 kg	15kg
		3 P	8kg		10kg	18 kg
		4 P	10kg		12kg	22kg
	AC200/220V	2 P	2A		3.5A	3.5A
		3 P	2A		3.5A	3.5A
		4P	3 A		4A	4A
	AC/DC 100/110V	2 P	4A		7A	8A
		3 P	4A		7A	8A
		4 P	5A		8A	9A
Rated short-time current			5 kA (1 sec)		10kA (1 sec)	12kA (1 sec)
Mechanical lifespan			20000 cycles			
Operating cycle frequency			150 cycles/hr			
Operating environment			Ambient temperature $-10 \sim+45^{\circ} \mathrm{C}$, relative humidity $45 \sim 85 \% \mathrm{RH}$			
Auxiliary switch			Switch capacity: AC220V 3A AC110V 5A; DC200V 0.2A			
Operating voltage range			85~110\% of the rated operating voltage			
Withstanding voltage		in circuit	2500 V			
		Itrol circuit	2000 V			
Accessory			Operating handle			
Executive standard			GB14048.11			

III. Outer dimensions

1 W-S1.63

I	A	B
2P	189	170
3P	211	192
4P	233	214

2 W-S1/125

3 W-S1/250

4 W-S1500

Component names:

(1)	Control circuit wiring terminal	(2)	Operating handle socket	(3)	Auxiliary switch	(4)	Main circuit terminal on A power side
(5)	Main circuit terminal on load side	(6)	Main circuit terminal on B power side	(7)	ON/OFF indicator	(8)	Operating handle (flexible)

(5) Main circuit terminal on Main circu
load side
 power side

IV. Operation loop

V. Operation instructions

When installing the switch avoid high temperatures, steam or harmful gas (exhaust gas) and dust.

3 The switch will stay in the input state when an input command and a tripping command are sent to the same power side simultaneously. Please avoid doing this,

2) To ensure reliable operation, maintain control commands for longer than 0.5 second.

4) Apply electric operation and try to avoid manua operation.

5) Under DC conditions, if the power has a step-down loop (DROPPER), connect the power to the input side of the step-down loop rather than the output side.
ATS
7) Excitation in the W-S1 series is instantaneous and the operating power is cut off after the input operation ends auxiliary switch cut by the external operating power via the auxiliary switch (AUX.SW.).

VI. Installation

The switches must be installed in the correct orientation because of their structure and mode of operation. Incorrect orientation will result in changes to the switch characteristics. Please ensure the switches are installed correctly. Contact the company if this cannot be done as stipulated for wiring or mechanical reasons. The switches should be installed vertically, parallel with the vertical plane of the switchboard, and with the nameplate visible from the front.

VII. Maintenance, examination and storage

Note: Examination and maintenance should be carried out by professionals with all the external power cut off $\dagger \dagger$ To maintain performance and a good operating state of the switches, perform the first maintenance within one year $t+t$ installation. After this, periodical maintenance should be carried out annually. The basic items to be inspected are \dagger listed as below.

1) Keep the switches clean to prevent failure due to dust, dirt, or rus

2) Under DC conditions, pay attention to the storage battery capacity and the charging.
3) Perform a visual inspection of the contact parts for deformation damage or change in color. Clear off metal deposits and burns on the contact surface and around the contact.

4) Before using switches that have become damp, or have not been used for some time, remove the dust, dirt and dry them well. Then every two poles inlet lines and outlet lines, the main/auxiliary circuit and the installation metal board (box) using a Megger. Thes values should be no less than switches must be taken out of use.
5) Poor contact can be the result of rust, oxidation or dust on the contac maintenance, che connection/ disconnection operatio (measure the contac resistance if dasten parts.
 unused for a long therio should be stored in an environment similar to the operating environment. Measures should be taken to shock or accident.

WST-1 Controller (Intelligent)

W ST-1 Controller

The WST-1 controller is newly developed device that matches a range of dual-power transfer switches. It has excellent performance and powerful functions that include delay, over and under voltage protection, open phase protection, overcurrent protection, line voltage and current display, power indication, remote clearing, automatic generator startup, a 485 communications interface, timing, automatic input and recovery as well as automatic input and nonautomatic recovery

WST-1 Controller Installation dimensions

WST-3 Controller

W ST-3 Controller

The WST-3 controller is an updated version of the original ATS-487 controller. It has powerful functions, excellent performance and is suitable for use with a range of dual-power transfer switches. Refer to the Controller Selection Sheet for the protection and display functions.

Installation dimensions

W-2-3-JJ Controller (Concise)

W-2-3-JJ Controller (Concise)

The W-2-3-JJ controller (concise) is a concise intelligent control device matching the W automatic transfer switch series (abbreviated as switche below). It has a delay function, open phase protection, power indication, remote clearing, and automatic generator startup.

Installation Dimensions

W-S Series Manual Dual-power Transfer Switches
I. Functions and characteristics

The W-S series are mainly used in transfer control via manual switches in power supply systems. Feedback points for gear signals are provided as needed.
II. Outer dimensions and installation dimensions

- W-S/100, 250, 630.
W-S/1600

${ }^{800 A}$

1250A

1600A

W-S/3200

200A

Outer dimensions								Installation dimensions					Wiring dimensions			Operating handle		
Specitrition		A1	B	c	E	M	u	J	K	L	z	N	R	T	ФX	D	F	G
100	3																	
	4	236	135	165	143	170	130	155	110	7	32.5	22	20	2.5	9	167	54.5	145
250	3													3.5				
	4	296	159.5	190	166	228	130	213	110	7	32.5	22	25	6	11	167	54.5	145
630	3	301	260	257	236	230	210	210	178	9	32.5	22	40	6	13	167	54.5	145
	4	368	260	254	232	290	270	270	178	9	32.5	22	40	15	13	167	54.5	145
1600	3	484	360	328	300	378	360	360	220	11	63	28	80	15	4-13	330	72	
	4	596	360	328	300	492	470	470	220	11	63	28	80	15	4-13	330	72	
3200	3	484	510	495		378	360	360	355	11	63	20	120	15	4-13	550	85	550
	4	596	510	495		492	470	470	355	11	63	20	120	15	4-13	550	85	550

III. Controller selection sheet

Controller	Function		Application scope
WST-3	$>$ Delay \diamond Overvoltage protection \checkmark Undervoltage protection \diamond Open phase protection \diamond Overcurrent protection Δ Line voltage display	Current display Power indication Remote clearing Generator startup (automatic) 485 communications interface (optional)	Universal
WST-1	\diamond Delay Overvoltage protection Undervoltage protection Open phase protection Overcurrent protection Line voltage display Current display	\triangle Power indication Remote clearing Generator startup (automatic) 485 communications interface (optional) Timing Automatic input and recovery; automatic input and nonautomatic recovery	Universal
WN-2-3-JJ (Concise)	Delay Open phase protection \diamond Power indication	Remote clearing Generator startup (automatic)	Below 630A

[^0]: Note: See notes 1) - 3) in Table 1.

[^1]: 3) The short-time withstanding current, operating current and tripping current figures are for reference only
 4) For products with current rating of 4000 A and 5000 A 4 P , the N -pole contact capacity is 2000 A and 2500 A respectively.
