DEMAG
Cranes \& Components

Technical data

DKK compact conductor lines

Technical information 2
Straight sections 4
Curved sections 5
Powerfeeds 6
Ramp sections, expansion joints 7
Current collector trolleys 8
Towing arms for current collector trolleys 9
Important for project drafting 10
Resistance against chemicals 16
Calculation and selection 17

1 Technical information

1. Conductor lines

Delivery form: Available with AL enclosure, with 4 or 5 conductors and cross sections of $10-70 \mathrm{~mm}^{2}$.
Standard lengths of 4 m .
Ambient temperatures and types of enclosure: $\mathrm{AL}-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ for IP 23.

2. Current collector trolleys

4 and 5-pole designs for loads of 25 A to 40 A at 100% CDF, with plain bearings for the upper/lower travel rollers.
Max. connecting round cable cross section $10 \mathrm{~mm}^{2}$; max. travel speed $200 \mathrm{~m} / \mathrm{min}$.

3. Powerfeeds

End powerfeed or line powerfeed on a 1 m section for conductor cross sections of 10 to $70 \mathrm{~mm}^{2}$.

DKK housing material PVC
Existing systems resp. system parts made of DKK housing material PVC in principle are compatible and replaceable or extendable by DKK housing material ALU.

When replacing or extending systems resp. system parts using DKK housing material PVC by DKK housing material ALU a protective grounding (PE) is absolutely necessary.
Upon request the DKK-aluminium housing can be ordered with integrated housingprotective grounding.

Design features:

- Space-saving, compact conductor lines for mobile electric equipment including cranes, trolleys, portable electric tools and other appliances;
- High electrical safety with separate insulators;
- Split enclosure provides easy access to the conductors;
- Wide range of application owing to high thermal and mechanical strength provided by the aluminium enclosure;
- Simple installation thanks to prepared assemblies;
- Simple attachment of electrical signal and pulse generators for fully and semiautomatic control systems;
- Resistant to corrosion;
- Light, compact design;
- Safety conductor line (protection against accidental contact).

Type designation (example):

Dimensions [mm]

$a=170(145)$	$f=76(40)$
$b=98$	$g=40$
$c=88$	$h=14-18 \varnothing(12-14 \varnothing)$
$d=54$	$\varnothing=M 8$
$e=60$	

Dimensions in () for DKK-SW 4/25/2,5 and 5/25/2,5

1) Fitting of stress relief union on three sides only possible for DKK-SW $4 / 25 / 2,5$ and $5 / 25 / 2,5$
2) Several installation parts of the DKK (housing of electrical supply at centre and at end, parts of the suspensions, etc.) are made of plastic.

DKK 4 / DKK 5 straight sections (4 and 5-pole including PE conductor)

1000 mm and $4000 \mathrm{~mm}{ }^{1)}$

Conductor cross section mm^{2}	DKK 4 straight sections				DKK 5 straight sections ${ }^{2)}$			
	4000 mm		1000 mm		4000 mm		1000 mm	
	Part no.	kg/unit						
10	97914044	8,4	97933044	2,1	97915044	8,5	97933544	2,3
16	97914144	8,8	97933144	2,2	97915144	9,7	97933544	2,3
20	97914244	9,4	97933244	2,5	97915244	10,2	97933644	2,7
30	97914944	10,5	97933244	2,5	97915344	11,6	97933644	2,7
50	97925544	12,7	97933344	3,2	97925644	13,8	97933744	3,5
70	97925744	14,9	97933444	3,7	97925844	16,0	97933844	4,0

Accessories

End cap

41466745.eps

A Accessories for DKK 4 and DKK 5

A set of accessories is required for each straight section, curve section, powerfeed (conductor connectors, joint connectors, joint plate, retaining plates, screws, nuts and bolts).
B Accessories for a DKK section for attachment to a C-rail [parts as above (A), but with link plates instead of retaining plates].

C End cap for DKK 4 and DKK 5

D Stop for DKK 4 and DKK 5
One stop point is required for each length of track. Where expansion joints are used, one stop point is required for each sub-section.

loose parts		$\mathrm{A}^{3)}$		B	C	D
Designation	For conductor cross sections	Accessories		C-rail arrangement Part no.	End cap complete Part no.	Stop complete Part no.
		Part no.	Weight kg/unit			
DKK 4	10, 16, 20	97904444	0,34	97914444	97901644	97914644
DKK 5		97904544	0,35	97914544	97901644	97914644
DKK 4	30, 50, 70	97934444	0,40	97944444	97901644	97914644
DKK 5		97934544	0,41	97944544	97901644	97914644

[^0]2) Max. cross section of the 5th conductor for DKK $10-30 \mathrm{~mm}^{2}=10 \mathrm{~mm}^{2}$, for DKK $50-70 \mathrm{~mm}^{2}=16 \mathrm{~mm}^{2}$ 3) Accessories component set A is required for extending existing conductor lines.

3 Curved sections

Curved sections for DKK 4 / DKK 5 (4 and 5-pole including PE conductor)

When ordering curved sections please state:

Conductor type (e.g. DKK 4 - 16 AL)
Radius R
Angle a
Curve I (inside) or A (outside) and sketch of track layout if possible.

Max. distance between suspension for curved sections 800 mm .

Conductor cross section $\left[\mathrm{mm}^{2}\right]$	Smallest radius $[\mathrm{mm}]$	Max. straightened-out length [mm]
$10,16,20,30$	900	2800
50,70	1100	

4 Powerfeeds

Centre powerfeed

Standard length: $\mathbf{1 0 0 0 ~ m m}$
Powerfeeds without PE conductor and 350 mm in length are available.

Max. cross section of connected conductors $10 \mathrm{~mm}^{2}$ including PE conductor

Max. cable diameter 19 mm .

Max. cross section of connected conductors $35 \mathrm{~mm}^{2}$
Max. cable diameter 36 mm and 24 mm.

Max. cross section of connected conductors $70 \mathrm{~mm}^{2}$

Max. cable diameter $2 \times 50 \mathrm{~mm}$.

1) Every powerfeed must be suspended
2) Terminal box arranged on the side on request.

41488844.eps

Centre powerfeed	Connected cross section max. $10 \mathrm{~mm}^{2}$				Connected cross section max. $35 \mathrm{~mm}^{2}$				Connected cross section max. $70 \mathrm{~mm}^{\mathbf{2}}$			
Conductor	DKK 4-1000 mm		DKK 5-1000 mm		DKK 4-1000 mm		DKK 5-1000 mm		DKK 4-1000 mm		DKK 5-1000 mm	
cross section [mm^{2}]	Part no.	kg/unit										
$\begin{aligned} & 10,16 \\ & 20,30 \end{aligned}$	$\begin{array}{\|l} 97921144 \\ 97921244 \end{array}$	$\begin{gathered} 2,75 \\ 3,2 \end{gathered}$	$\begin{array}{\|l} 97921344 \\ 97921344 \end{array}$	$\begin{aligned} & 2,85 \\ & 2,85 \end{aligned}$	$\begin{array}{\|l\|} \hline 97922644 \\ 97922744 \end{array}$	$\begin{aligned} & 4,8 \\ & 5,2 \end{aligned}$	$\left\|\begin{array}{l} 97922844 \\ 97922844 \end{array}\right\|$	$\begin{aligned} & 4,9 \\ & 4,9 \end{aligned}$	-	-	-	-
50, 70	-	-	-	-	-	-	-	-	97924344	5,0	97924444	5,4

End powerfeed
Max. cable diameter 50 mm

End powerfeed			
Conductor cross section $\left[\mathrm{mm}^{2}\right]$	Max. connected cross section $\left[\mathrm{mm}^{2}\right]$	DKK 4 und DKK 5	
$10,16,20$	25	Part no.	$\mathrm{kg} / \mathrm{unit}$
$30,50,70$	70	97924744	0,6

5 Ramp sections, expansion joints

Funnel entry attachment for DKK 4 and DKK 5 with accessories

(1) Marks upper edge of current collector trolley

Entry speed max. $100 \mathrm{~m} / \mathrm{min} \quad$ Gap between min .10 mm
Protections against IP 10 transfer sections
max. 100 mm accidental contact
Horizontal offset max. $\pm 10 \mathrm{~mm}$
Vertical offset max. $\pm 8 \mathrm{~mm}$

Item	Designation	Part no.	$\mathrm{kg} / \mathrm{unit}$
I	Ramp section ${ }^{1)}$	97927044	0,29
II	45° ramp section for RH track switch ${ }^{2)}$	on request	0,65
III	45° ramp section for LH track switch ${ }^{2)}$	on request	0,65

1) 90° ramp section, 140 mm dead section.
2) Ramp sections are available with other angles. Only available fixed to conductor sections.

For entry and transfer points:

Entry speed	max. $100 \mathrm{~m} / \mathrm{min}$
Protection against	IP 10
accidental contact	$\pm 20 \mathrm{~mm}$
Horizontal offset	$\pm 15 \mathrm{~mm}$
Vertical offset min. 10 mm Gap between attachments	Ramp section and funnel attachment dead for 270 mm.

	Part no.	kg/unit
Funnel attachment with accessories	97917844	0,150

Expansion joints for DKK 4 and DKK 5

Every expansion joint must be suspended. For dimension X see diagram 1, page 12.

Designation	Conductor cross section $\left[\mathrm{mm}^{2}\right]$	DKK 4		DKK 5	
		Part no.	$\mathrm{kg} / \mathrm{unit}$	Part no.	$\mathrm{kg} / \mathrm{unit}$
Expansion joint	$10,16,20$	97930244	3,0	97930344	3,2
	$30,50,70$	97930644	3,5	97930744	3,7

6 Current collector trolleys

DKK-SW 4 / 25 / 2,5 and DKK-SW 5 / 25 / 2,5 current collector trolleys

41467745.eps

DKK-SW 4 / 40 / 10 and DKK-SW 5 / 40 / 10
DKK-SW 4 / 20 / 10 and DKK-SW 5/20 / 10 current collector trolleys

41467845.eps

1) Current collector trolleys without PE conductor are available.
2) PG 16 cable entry gland possible.
3) Cable entry gland on the side possible on request.

Current collector trolleys without connecting cable		Cross section [mm^{2}]	Part no.	Weight/unit [kg]
DKK-SW 4 / 25 / 2,5 DKK-SW 5 / 25 / 2,5	Bronze	-	$\begin{aligned} & 97906044 \\ & 97916044 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 0,65 \end{aligned}$
Connecting cable ${ }^{5}$	YMHYk-J	$5 \times 2,5$	50493444	0,28
DKK-SW 4 / 20 / 10 DKK-SW 5 / 20 / 10 DKK-SW 4 / 20 / 10 DKK-SW 5 / 20 / 10	Graphite Bronze		$\begin{aligned} & 97935944 \\ & 97936044 \\ & 97927944 \\ & 97928044 \end{aligned}$	$\begin{aligned} & 0,70 \\ & 0,75 \\ & 0,70 \\ & 0,75 \end{aligned}$
Connecting cable ${ }^{5}$	H 07 RN-F	$\begin{aligned} & 4 \times 4 \\ & 4 \times 6 \\ & 4 \times 10^{6)} \\ & 5 \times 6 \quad{ }^{6)} \\ & 5 \times 10^{6)} \end{aligned}$	47134199 47134699 47132099 47194999 47195099	$\begin{aligned} & 0,40 \\ & 0,55 \\ & 1,00 \\ & 0,65 \\ & 1,15 \end{aligned}$

5) Length required must be specified in meters.
6) Larger cable entry gland required.

Sliding carbon contacts

Sliding carbon contacts, cpl.	DKK-SW 4		DKK-SW 5		For current collector trolley
Bz 25	97916544	0,07	Part no.	kg/unit	$\mathrm{SW} / 25 / 2,5$
Gr 20	97928644	0,07	97928744	0,09	$\mathrm{SW} / 2544$
Bz 40	97928844	0,11	97928944	0,13	$\mathrm{SW} / 25 / 10$

Sliding carbon contact complete [3 sliding contacts (phase), 1 sliding contact (PE conductor), 2 wear protection rollers]. $\mathrm{Bz}=$ bronze, $\mathrm{Gr}=$ graphite.

7 Towing arms for current collector trolleys

Current collector trolley towing arms	Part no.	Weight/unit $[\mathrm{kg}]$
Not for transfer points	97916244	0,350
For transfer points	97918044	0,500

Accessories		Part no.	Weight/unit $[\mathrm{kg}]$
I	Supporting roller	97923344	0,02
II	Travel roller	97928544	0,04

Supporting roller I

Travel roller II

8 Important for project drafting

Straight sections, curved sections

The designation code for the DKK installation is:

Selection criteria for DKK Alu

Criteria	AL material
Permissible enclosure temperature	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Max. continuous conductor length	$200 \mathrm{~m}^{2)}$

Maximum spacing of suspension centres of aluminium design.
max. 3 m with 10,16 and $20 \mathrm{~mm}^{2}$ conductor cross section
max. 2 m with 30,50 and $70 \mathrm{~mm}^{2}$ conductor cross section
max. $0,8 \mathrm{~m}$ for curved sections
Standard spacing of suspension centres: 2 m for all conductor cross sections

Electrical load (continuous current)

Accessories, stop points, end caps

Conductor cross section ${ }^{3)}$	$\left[\mathrm{mm}^{2}\right]$	10	16	20	30	50	70
Continuous current $(100 \% \mathrm{CDF})$	$[\mathrm{A}]$	60	80	90	120	200	280

In order to be able to join up the components electrically and mechanically, a set of accessories (see section 2) is needed for each straight section, curved section, powerfeed and expansion joint. Two suspension fittings can be assembled with each set of accessories.
Each DKK installation - or parts of installations - must be secured by a stop point to prevent longitudinal movement. The ends of the track must be protected against accidental contact by end caps.

The fixed current supply for DKK conductor lines is fed in at the powerfeed. Centre and end powerfeeds are available.
The type of powerfeed selected depends on:

- Design of the conductor cross section and the voltage drop along the line,
- Position of the powerfeed in the installation,
- Cross section of connected conductors,
- Fitting dimensions.

The centre powerfeed is delivered ready assembled on a 1 m straight section. The end powerfeed must be assembled on site. The power feed section connecting cable must have sufficient flexibility so that DKK conductor line expansion is not restrained.

[^1]2) Greater lengths on request (please state conditons of use).

Isolating section
 DKK 4 and DKK 5 ramp sections
 DKK 4 and DKK 5 funnel-shaped entry attachments

The conductor lines may be interrupted for control signal transmission. Isolating sections are integrated in the factory according to customer specifications. An isolating section features a 30 mm interruption for a sliding contact length of 25 mm . Use 2 current collectors for uninterrupted signal transmission, if required.

Ramp sections are used at transfer points. Transfer points are track switches, turntables, latching points etc.

The funnel-shaped entry attachment can only be used in conjunction with the ramp section. They are used at transfer points if they are off-set and at free entry points.

If two current collector trolleys are used within arm's reach at transfer points, protection against contact is no longer ensured. In this case, the current collector trolley transferring must be electrically isolated.

Entry speed Protection against accidental contact Horizontal offset: Vertical offset: Gap between attachments

Ramp section Funnel-shaped entry attachment max. $100 \mathrm{~m} / \mathrm{min}$

IP 10
max. $\pm 10 \mathrm{~mm} \quad \pm 20 \mathrm{~mm}$
max. $\pm 8 \mathrm{~mm} \quad \pm 15 \mathrm{~mm}$
$\min .10 \mathrm{~mm} \quad \min .10 \mathrm{~mm}$ max. 100 mm

Expansion joints for DKK 4 and DKK 5

Use of ramp sections

Use of expansion joints

Use of expansion joints

Transfer
from inside to outdoors
Expansion joint
Enclosure material
AL $\quad \mathrm{A} \leq 200 \mathrm{~m}-\mathrm{B} \leq 200 \mathrm{~m}$
For gap X see diagram 1, page 12

Gap X

Gap X must be adjusted during assembly according to the temperature during assembly and the distance between the stop points.

Diagram 1

For ambient temperatures $+100^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$

Example:

Alu enclosure material
Temperature during assembly $\vartheta=20^{\circ} \mathrm{C}$
Distance between stop points $\quad I=60 \mathrm{~m}$
Gap from diagram $\quad X=115 \mathrm{~mm}$
$\mathrm{I}_{1}=40 \mathrm{~m}$
$\mathrm{I}_{2}=60 \mathrm{~m}$
$\mathrm{I}_{3}=80 \mathrm{~m}$
$\mathrm{I}_{4}=100 \mathrm{~m}$

Technical data

Application criteria for current collector trolleys

Towing arms for DKK-SW 4 and DKK-SW 5

Criteria		DKK 4 and DKK 5		
		SW / 25 / 2,5	SW / 20 /10	SW /40 /10
Sliding contact material		Bronze	Graphite	Bronze
Permissible voltage		500 V ~	500 V ~	500 V ~
Max. continuous current	100 \% CDF	25 A	20 A	40 A ${ }^{1)}$
	30 \% CDF	30 A	25 A	$50 \mathrm{~A}{ }^{1)}$
Max. connected cross section		2,5 mm ${ }^{2}$	$10 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$
Stain relief cable gland/ Clamping range for outside \varnothing		PG16	M32	M32
		$\varnothing 12-14 \mathrm{~mm}$	Ø 13-20 mm	Ø 13-20 mm
Max. fuse protection for connected conductor cross section	2,5 mm ${ }^{2}$	63 A	63 A	63 A
	$4 \mathrm{~mm}^{2}$	-	80 A	80 A
	$6 \mathrm{~mm}^{2}$	-	100 A	100 A
	$10 \mathrm{~mm}^{2}$	-	125 A	125 A
Travel speed (straight track)		$200 \mathrm{~m} / \mathrm{min}$	$200 \mathrm{~m} / \mathrm{min}$	$200 \mathrm{~m} / \mathrm{min}$
Negotiating curves to R		700 mm	1000 mm	1000 mm

Permissible continuous current (sum of all nominal currents)

	Current collector trolley connection	DKK-SW 4 / 25 / 2,5 DKK-SW 5 / 25 / 2,5			DKK-SW 4 / 20 / 10 DKK-SW 5 / 20 / 10			DKK-SW 4 / 40 / 10 DKK-SW 5 / 40 / 10		
n		CDF			CDF			CDF		
		100 \%	60 \%	30 \%	100 \%	60 \%	30 \%	100 \%	60 \%	30 \%
1		25 A	30 A	30 A	20 A	25 A	25 A	40 A	45 A	50 A
2	parallel	50 A	60 A	60 A	40 A	50 A	50 A	80 A	90 A	100 A
3	parallel	70 A	80 A	90 A	60 A	70 A	75 A	110 A	125 A	150 A

When DKK conductor lines are used in the open air, in chemical environments and near the sea, current collector trolley 97935944 or 97936044 with graphite sliding contacts should be used. The number of current collector trolleys should be increased by $1(n+1)$.
The smallest permissible conductor cross section should be used in order to keep the effects of reactions on the current collector trolleys as low as possible.

Towing arm 97916244 cannot be used at transfer and entry points (exception: expansion joints).
In such cases, towing arm 97918044 should be used.

Fitting dimensions

Accessories for mounting the DKK to structures provided by the customer

	Clamping range $[\mathrm{mm}]$	I section girder	Length $[\mathrm{m}]$	Part no.
Clamp M 10 x 45	$8-16$	$160-400$		97454844
Clamp M 10 x 50	$16-30$	$425-600$		97454944
			0,60	
C-rail 40 x 25 mm			0,70	
galvanized			0,80	
			6,00	
Angle bracket			97452944	
Accessories DKK 4 10-30 mm^{2}			97914444	
Accessories DKK 5 10-30 mm^{2}			97914544	
Accessories DKK 4 50-70 mm^{2}			97944444	
Accessories DKK 5 50-70 mm^{2}			97944544	

For one complete DKK section (conductor connectors, joint connectors, joint plate, link plates, nuts and bolts) see section 2.

Mounting examples

I Current collectors trolleys
DKK-SW 4 / 25 / 2,5 and DKK-SW 5 / 25 / 2,5

II Current collectors trolleys DKK-SW 4 / 20 / 10,
DKK-SW 5 / 20 / 10,
DKK-SW 4 / 40 / 10 and DKK-SW 5 / 40 / 10

Suspension from upper flange. Only for I and towing arm 97916244

Suspension from one side of C-rail. Dimension a must be specified by

Suspension from bolted angle bracket.
Dimension a must be specified by the customer.

Suspension from both sides of C-rail.
Dimension a must be specified by the customer.

9 Resistance against chemicals

9.1 Acids

Agent		Installation parts	Enclosure material	Remarks
Acid	conc.	Plastic ${ }^{1)}$	AL ${ }^{1}$	
Chromatic acid	40 \%	\oplus	-	Avoid direct contact
Chromatic sulphuric acis	20 \%	\oplus	-	Avoid direct conta
Nitric acid	10 \%	+	\oplus	Increased wear on sliding contacts
Sulphuric acid	10 \%	+	-	
Acetic acid	5 \%	+	\oplus	
Carbonic acid	10 \%	+	+	
Oleic acid		+	+	
Tartaric acid	10 \%	+	+	
Formic acid	20 \%	+	-	Min. distance from bath: 5 m Max. temperature $+30^{\circ} \mathrm{C}$ Increased wear on current collectors
Arsenic acid	10 \%	+	-	
Boric acid	10%	+	\oplus	
Hydrofluoric acid	10 \%	+	\oplus	
Lactic acid	10 \%	+	\oplus	
Phosphoric acid	50 \%	+	\oplus	
Oxalic acid	10 \%	+	\oplus	
Hydrochloric acid	20 \%	\oplus	-	
Citric acid	10 \%	+	\oplus	

9.2 Other chemicals

Agent	Installation parts	Enclosure material	Remarks
	Plastic ${ }^{1)}$	AL ${ }^{1)}$	
Alkaline solutions $<1 \%$	+	+	Min. distance: 5 m
Alkaline solutions $>1 \%$	\oplus	\oplus	
Ammoniacal water	-	\oplus	
Alcohols	+	+	
Aliphatic hydrocarbons	-	-	
Aromatic hydrocarbons	-	-	
Chloric solvents	-	-	
Esters	-	-	
Ketone	-	\oplus	
Trichlorethylene	-		Cannot be generally answered
Alkaline solvents			

9.3 Fuels, oils, grease etc.

Agent		Installation parts	Enclosure material	Remarks
		Plastic ${ }^{1)}$	AL ${ }^{1)}$	
Cleaning petrol		\oplus	\oplus	
Normal grade petrol		\oplus	\oplus	
Super grade petrol		\oplus	\oplus	Avoid direct contact
Kerosene		\oplus	\oplus	
White spirits		\oplus	\oplus	
Diesel oil		\oplus	\oplus	
Benzene		-	\oplus	
Oils, grease (non-aromatic)		+	+	
Drilling oil		+	+	Avoid direct contact
ATE brake fluid		\oplus	\oplus	
Foodstuffs and consumables		+	+	Avoid direct contact with aluminium Always use double current collectors
Seawater	Distance < 5 km	+	-	
Seawater	Distance $>5 \mathrm{~km}$	+	\oplus	

[^2]
resistant

$\oplus \quad$ resistant within limits

10 Calculation and selection

 voltage drop and the permissible current loading.- Cross sections are determined taking into account a max. permissible voltage drop of $2,5 \%$ for crane tracks $+2,5 \%$ for crane bridge. The principal factors are the starting current $I_{A} \times \cos \varphi_{A}$ of the largest motor and the nominal current $I_{N} \times$ $\cos \varphi_{N}$ of the next smaller motor. For motors connected in parallel, the currents must be added together.
The calculated cross sections should be halved for current supplies to solo hoists.
- Cross sections are calculated taking into account the max. permissible current load for supply lines to VDE 100 Part 430/523. The determining factor is the sum of nominal currents of all drive units plus any other electrical consumers. The currents contained in brackets in diagram 2 (see page 18) must not be exceeded.

Permissible voltage drop

The voltage drop depends on current I_{G}. Current I_{G} is obtained by adding the starting current $\left(I_{A} \times \cos \varphi_{A}\right)$ and nominal current $\left(I_{N} \times \cos \varphi_{N}\right)$ (see table 1 below and key motor data in DH technical data volume 1203340 44). The conductor cross section can be selected using equation 1 or diagram 2.
Table 1 shows the values for determining I_{G} according to the number of cranes on one conductor line.

Table 1

Number of cranes on cunductor line	Of all cranes together (order according to output)			
	1st Motor	2nd Motor	3rd Motor	4th Motor
1	$\mathrm{I}_{\mathrm{A}} \times \cos \varphi_{\mathrm{A}}$	$\mathrm{I}_{N} \times \cos \varphi_{N}$	-	-
2	$I_{A} x \cos \varphi A$	$\mathrm{I}_{N} \times \cos \varphi_{N}$	$\mathrm{I}_{\mathrm{N}} \times \cos \varphi_{N}$	-
3	$I_{A} \times \cos \varphi_{A}$	$\mathrm{I}_{\mathrm{A}} \times \cos \varphi_{A}$	-	-
4	$\mathrm{I}_{A} \times \cos \varphi_{A}$	$\mathrm{I}_{A} \times \cos \varphi_{A}$	$\mathrm{I}_{N} \times \cos \varphi_{N}$	${ }^{-}$
5	$\mathrm{I}_{\mathrm{A}} \times \cos \varphi_{A}$	$\mathrm{I}_{\mathrm{A}} \times \cos \varphi_{A}$	$\mathrm{I}_{N} \times \cos \varphi_{N}$	$\mathrm{I}_{\mathrm{N}} \times \cos \varphi_{N}$

For double drives accordingly: $2 \times I_{A} \times \cos \varphi_{A}$ or $2 \times I_{N} \times \cos \varphi_{N}$. Exception:

For double hoist units with delayed switching-on $I_{A} \times \cos \varphi_{A}+I_{N} \times \cos \varphi_{N}$.

Calculating the conductor

 cross section1. Conductor cross section
2. Find: length of line
3. Adjustment for starting current
$I_{A} \times \cos \varphi_{A}$ or nominal current
$I_{N} \times \cos \varphi_{N}$ for a different voltage U_{2}
4. Adjustment for conductor cross section A_{2} for a different length of line L_{2}
5. Permissible voltage drop ($\Delta \mathrm{U}=10 \mathrm{~V}$ at 400 V corresponds to 2,5\%)
6. Conversion of $400 \mathrm{~V}, 50 \mathrm{~Hz}$ to required voltage and frequency

$I_{2}=I_{1} \times \frac{400 \mathrm{~V}}{U_{2}} \times \frac{50 \mathrm{~Hz}}{\mathrm{f}_{2}}$

Determining the conductor cross section by diagram

Determining the conductor cross section for the maximum permissible voltage drop of $2,5 \%$.

Diagram 2

The conductor cross section and/or the voltage drop may be reduced by the number and position of powerfeeds.
$\ell=$ powerfeed length
$L=$ conductor length
$\ell=\mathrm{L} \quad$ for end powerfeed
$\ell=\mathrm{L} / 2$ for middle powerfeed
$\ell=\mathrm{L} / 4$ for end powerfeed on both ends
$\ell=\mathrm{L} / 6$ bei centre powerfeed for each $\mathrm{L} / 6$ from the ends
$\ell=L / 10$ for middle powerfeed and centre powerfeed for each $L / 10$ from the ends

Example:

Diagram 3

Determining the conductor cross-section for a maximum permissible temperature rise of the conductors.

Permissible temperature rise

The permissible temperature rise depends on the sum total of all nominal currents $I_{\text {Ntot }}$ (diagram 3).
When determining the conductor cross sections by means of equation 1 , page 17 or diagram 2, page 18 , the result obtained must always be compared with the cross section determined by using diagram 3 .
The larger cross section should always be selected.

[^3]
Demag Cranes \& Components GmbH

Drives

P.O. Box 67, 58286 Wetter (Germany)

Telephone (+49/2335) 92-0
Telefax (+49/2335) 92-7298
e-mail drives@demagcranes.com
www.demagcranes.com

Reproduction in whole or in part only with prior consent of Demag Cranes \& Components GmbH, 58286 Wetter (Germany)

[^0]: 1) Other lengths from 160 mm and lengths without $P E$ conductors are also available.
[^1]: 1) Greater lengths are possible by using expansion joints.
[^2]: 1) Information on resistance applies to room temperature ($20^{\circ} \mathrm{C}$).

 The following applies for all chemicals: Increased oxidation (corrosion) on the conductors

[^3]: $I_{\text {Ntot }}=$ Sum total of all nominal currents
 CDF = Cyclic Duration Factor

