

ALCO's TX6 series of Thermo[®]-Expansion Valves are designed for air conditioning, chillers, rooftops, close control, A/C transportation, heat pumps, industrial cooling process and refrigeration applications. The TX6 is ideal for those applications requiring hermetic / compact size combined with stable and accurate control over wide load and evaporating temperature ranges.

Features

- Balance port construction for constant superheat operation over a wide application range under variation of condensing pressure
- Six sizes up to 97 kW (R410A)
- Compact size
- Hermetic design
- Brazing connections with straight through configuration
- Long life laser welded stainless steel power element resists corrosion
- Large diaphragm eliminates disturbances to the valve and provides smoother and consistent valve control
- Tailored charges for different applications
- External equalizer
- External superheat adjustment
- Brass body

Introduction

Thermo[®]-Expansion Valves control the superheat of refrigerant vapour at the outlet of the evaporator. They act as a throttle device between the high and low pressure sides of refrigeration system and ensure the rate of refrigerant flow into the evaporator exactly matches the rate of evaporation of liquid refrigerant. Thus the evaporator is fully utilized and no liquid refrigerant may reach the compressor.

When the actual superheat is higher than the setpoint, thermo[®] expansion valve feeds the evaporator with more liquid refrigerant. Likewise, the valve decreases the refrigerant flow to the evaporator when the actual superheat is lower than the set point.

Construction

The valve body is made from brass, the connections are in a straight through configuration. The diaphragm movement is transferred to a steel metering pin. When the charge pressure increases, the diaphragm will be deflected downward and this motion will be transferred to the pin. The pin will then lift from seat and the liquid can pass through orifice.

The pin design gives the balance port feature. Balance port design will eliminate the undesirable variable influence of inlet pressure i.e. condensing pressure during different air ambient temperature in systems with aircooled condenser.

The balance port design is only available in one direction as arrow indicates on the valve. This means, when the valve operates as Bi-flow in heat pump applications, the advantage of balance port is given in cooling or heating mode.

A spring opposes the force underneath the pin and its tension can be adjusted by the external stem. The static superheat can be adjusted by rotation of the stem. Static superheat increases by turning the stem clockwise and decreased by turning the stem counter clockwise.

Description of bulb charges

The application ranges of ${\rm Thermo}^{\rm ®}$ expansion values are heavily influenced by the selected charge.

Liquid charges

The behaviour of Thermo[®]-Expansion Valves with liquid charges is exclusively determined by temperature changes at the bulb and not subject to any cross-ambient interference. They feature a fast

response time and thus react quickly in the control circuit. Liquid charges **cannot incorporate MOP functions.** The maximum bulb temperatures is limited and shall not exceed the values, shown in the following table:

Table 1:

Refrigerant/Charge	Maximum bulb temperature
R 134a / M0	88°C
R 407C / N0	71°C
R 22 / H0	71°C

Gas charges

The behaviour of Thermo[®]-Expansion Valves with gas charges will be determined by the lowest temperature at any part of the expansion valve (power assembly, capillary tube or bulb). If any parts other than the bulb are subject to the lowest temperature, malfunction of the expansion valve may occur (i.e. erratic low pressure or excessive superheat). ALCO TX6 with gas charges **always feature MOP functions** and include ballasted bulbs. Ballast in the bulb leads to slow opening and fast closure of the valve. Maximum bulb temperature is 120°C.

MOP (Maximum Operating Pressure)

MOP functionality is somewhat similar to the application of a crankcase pressure regulator.

Evaporator pressures are limited to a maximum value to protect compressor from overload conditions.

MOP selection should be within maximum allowed low pressure rating of the compressor and should be at approximately 3 K above maximum evaporating temperature.

			<u> </u>	-							
	MOP		Upper limit of evaporating temperature °C								
Code	bar	°C	R407C	R22	R 410A	R134a					
N1	6.9	+17	+14	-	-	-					
H1	6.9	+15	-	+12	-	-					
M1	3.8	+14	-	-	-	+10					
Z1	12.1	+16			+14						

Table 2: MOP value, gas charge

Note: All pressures are gauge pressure

Valve operates as superheat control in normal working range and operates as pressure regulator within MOP range.

Practical hints:

Superheat adjustments influence the MOP:

- Increase of superheat: decrease of MOP
- Decrease of superheat: increase of MOP

Heat pump applications

There are several ways to apply an expansion valve in a heat pump. The following figures are showing the most popular applications:

1) System with two expansion valves, single Bi-flow filter dryer and two check valves

Check valve

This type of system employs two expansion valves and two check valves. In this type of application, it is recommended to locate the external equalizer and bulb on the suction line between reversing valve and suction accumulator (if available) or compressor as shown.

2) System with single Bi-flow expansion Valve and Alco Biflow filter dryer(s) BFK

3) System with single Bi-flow expansion Valve and Alco suction filter dryer ASD

Bi-flow application

For application of TX6 in Bi-flow as single TXV in heat pumps. the following subjects need to be considered:

- TX6 is balance port only in normal flow direction but not in reverse flow direction
- Inlet pressure in reverse flow act on valve pin as closing force. This effect is more significant at higher inlet pressure and lower evaporating temperature
- This effect will prevent the valve from desired opening percentage in reverse flow dependant to port size of valve, inlet pressure and evaporating temperature

Based on the above facts, it is necessary to evaluate the selection of TX6 in Bi-flow application. The following curves and table are as guidance for proper selection of TX6 in BI-flow application.

TX6 Thermo Expansion Valves

Α

S

Н

F

Size of valve	Condition in reverse flow	Impact on operation of valve	Application of valve in Bi-flow	Consideration for performance improvement			
Small port size	High or low operating inlet pressure	Negligible					
(TX62 /3)	High evaporating temperature	Negligible	Recommended	None			
	Low evaporating temperature	Slightly increase of superheat					
Large port size (TX64 /5 /6 /7)	High or low operating inlet pressure	Increase of superheat	This needs to be evaluated *	 Lower system capacity in reverse vs. normal flow 			
	Higher evaporating temperature	Increase of superheat	This needs to be evaluated *	Reduction of compressor capacity Oversized value			
	Lower evaporating temperature	Significant increase of superheat	Not recommended	No solution			

*) During system design and prototype unit test.

Other Subjects to be considered in Bi-flow applications:

 In an air to water (liquid) systems, it may require a receiver in order to hold excessive refrigerant in one mode of operation

D

 Do not install the Bulb of TXV between accumulator and compressor

Static superheat setting

The factory setting of a TX6 is made with the valve pin just starting to move away from the seat. The superheat increment necessary to get the pin ready to move is called static superheat (SS). An increase of superheat over and beyond the static superheat (factory setting) is necessary for the valve pin to open to its rated capacity. This additional superheat is known as gradient or opening superheat (OS).

The working superheat (WS), which can be measured in the field, is the sum of static superheat and opening superheat.

The opening superheat of TXV varies if the selected valve operates at higher or lower capacities than the rated capacity. It is highly recommended to select the valve according to the rated capacity. Using reserve capacity leads to larger opening superheat and longer pull down time during start-up or after defrost.

Selecting a larger valve than required in a system may lead to smaller opening superheat and/or hunting of TXV.

- It is possible to install several Bi-flow filter dryers in parallel in system with larger capacity
- It is important to provide proper refrigerant distribution through liquid distributor at the inlet of evaporator due to distance between TXV and distributor

Standard superheat setting

Charge	Refrigerant/ charge code	Refrigerant	Setting	Giv	/en		
			Bulb temperature	Nominal static superheat (SS)	Nominal opening superheat (OS*)		
	MO	R 134a					
Liquid (no MOP)	N0	R 407C					
	H0	R 22					
MOP 3.8 bar	M1	R 134a	0°C	3.3 K	3 K		
MOP 6.9 bar	N1	R 407C					
	H1	R 22					
MOP 12.1 bar	Z1	R 410A					

*) The given opening superheats valid when the capacity of selected valve is equal to the capacity of system at design / operating conditions. Note : All pressures are gauge pressure.

Nomenclature and identification

D

TX6 Thermo Expansion Valves

Alco Controls

Ε

Η

Ε

Selection table

Refrigerant	Nominal capacity Qn	Without M	OP	With MOP [*]	*)	Conne	ection size
	kW	Туре	PCN	Туре	PCN	Equalizer	Inlet x Outlet
	14.4	TX6-N02	801 651	TX6-N12	801 655	Ext. 1/4"	12mm x 16mm
	14.4	TX6-N02	801 653	TX6-N12	801 534	Ext. 1/4"	1/2" x 5/8"
	25.6	TX6-N03	801 652	TX6-N13	801 656	Ext. 1/4"	12mm x 16mm
	25.6	TX6-N03	801 654	TX6-N13	801 535	Ext. 1/4"	1/2" x 5/8"
	35.7	TX6-N04	801 659	TX6-N14	801 667	Ext. 1/4"	16mm x 22mm
	35.7	TX6-N04	801 663	TX6-N14	801 536	Ext. 1/4"	5/8" x 7/8"
R 407C	45.2	TX6-N05	801 660	TX6-N15	801 668	Ext. 1/4"	16mm x 22mm
	45.2	TX6-N05	801 664	TX6-N15	801 537	Ext. 1/4"	5/8" x 7/8"
	66.9	TX6-N06	801 661	TX6-N16	801 669	Ext. 1/4"	22mm x 28mm
	66.9	TX6-N06	801 665	TX6-N16	801 538	Ext. 1/4"	7/8" x 1-1/8"
	87.3	TX6-N07	801 662	TX6-N17	801 670	Ext. 1/4"	22mm x 28mm
Refrigerant	87.3	TX6-N07	801 666	TX6-N17	801 539	Ext. 1/4"	7/8" x 1-1/8"
	13.3	TX6-H02	801 551	TX6-H12	801 555	Ext. 1/4"	12mm x 16mm
	13.3	TX6-H02	801 549	TX6-H12	801 553	Ext. 1/4"	1/2" x 5/8"
	23.7	TX6-H03	801 552	TX6-H13	801 556	Ext. 1/4"	12mm x 16mm
	23.7	TX6-H03	801 550	TX6-H13	801 554	Ext. 1/4"	1/2" x 5/8"
	33.0	TX6-H04	801 585	TX6-H14	801 593	Ext. 1/4"	16mm x 22mm
R 22	33.0	TX6-H04	801 581	TX6-H14	801 589	Ext. 1/4"	5/8" x 7/8"
	41.8	TX6-H05	801 586	TX6-H15	801 594	Ext. 1/4"	16mm x 22mm
	41.8	TX6-H05	801 582	TX6-H15	801 590	Ext. 1/4"	5/8" x 7/8"
	61.9	TX6-H06	801 587	TX6-H16	801 595	Ext. 1/4"	22mm x 28mm
	61.9	TX6-H06	801 583	TX6-H16	801 591	Ext. 1/4"	7/8" x 1-1/8"
	80.8	TX6-H07	801 588	TX6-H17	801 596	Ext. 1/4"	22mm x 28mm
	80.8	TX6-H07	801 584	TX6-H17	801 592	Ext. 1/4"	7/8" x 1-1/8"
	10.3	TX6-M02	801 543	TX6-M12	801 547	Ext. 1/4"	12mm x 16mm
	10.3	TX6-M02	801 541	TX6-M12	801 545	Ext. 1/4"	1/2" x 5/8"
	18.4	TX6-M03	801 544	TX6-M13	801 548	Ext. 1/4"	12mm x 16mm
	18.4	TX6-M03	801 542	TX6-M13	801 546	Ext. 1/4"	1/2" x 5/8"
	25.6	TX6-M04	801 569	TX6-M14	801 577	Ext. 1/4"	16mm x 22mm
R 134a	25.6	TX6-M04	801 565	TX6-M14	801 573	Ext. 1/4"	5/8" x 7/8"
	32.5	TX6-M05	801 570	TX6-M15	801 578	Ext. 1/4"	16mm x 22mm
	32.5	TX6-M05	801 566	TX6-M15	801 574	Ext. 1/4"	5/8" x 7/8"
	48.1	TX6-M06	801 571	TX6-M16	801 579	Ext. 1/4"	22mm x 28mm
	48.1	TX6-M06	801 567	TX6-M16	801 575	Ext. 1/4"	7/8" x 1-1/8"
	62.8	1X6-M07	801 572	TX6-M17	801 580	Ext. 1/4"	22mm x 28mm
	62.8	1 X6-MU7	801 568	TX6-M17	801 576	Ext. 1/4"	7/8° x 1-1/8°
	16.0			TX6-Z12	801 510	Ext. 1/4"	12mm x 16mm
	16.0			TX6-Z12	801 511	Ext. 1/4"	1/2" x 5/8"
	28.0			TX6-Z13	801 512	Ext. 1/4"	12mm x 16mm
	28.0			TX6-Z13	801 513	Ext. 1/4"	1/2" x 5/8"
	40.0			TX6-Z14	801 514	Ext. 1/4"	16mm x 22mm
R 410A	40.0			TX6-Z14	801 515	Ext. 1/4"	5/8" x 7/8"
	50.0			TX6-Z15	801 516	Ext. 1/4"	16mm x 22mm
	50.0			TX6-Z15	801 517	Ext. 1/4"	5/8" x 7/8"
	74.0			TX6-Z16	801 518	Ext. 1/4"	22mm x 28mm
	74.0			TX6-Z16	801 519	Ext. 1/4"	7/8" x 1-1/8"
	97.0			TX6-Z17	801 520	Ext. 1/4"	22mm x 28mm
	97.0			TX6-Z17	801 521	Ext. 1/4"	7/8" x 1-1/8"

Nominal capacities at $+38^{\circ}$ C saturated condensing temperature, $+4^{\circ}$ C saturated evaporating temperature and 1 K subcooling at the inlet of the expansion valve. Valve selection for other operating conditions see pages 7 to 11.

*) See table 2 on page 2 for MOP values.

Dimensioning of Thermo[®]-Expansion Valves

To apply proper Thermo $^{\circledast}\mbox{-}Expansion$ Valves on a system the following design conditions must be available:

- Cooling capacity Q₀
- Effective pressure differential across TXV ∆p
- Evaporating temperature / pressure
- Lowest possible condensing temperature / pressure
- Liquid temperature at the inlet of TXV
- Refrigerant type

To facilate valve dimensioning for other than the standard conditions ALCO offers an **Excel based Selection Tool.** This can be ordered from all Copeland sales offices or download from the Emerson web page.

See **www.emersonclimate.com/europe** for contact addresses, email or phone numbers.

Otherwise the following formula has to be used:

Cooling capacity x $K_{\Delta p}$ x K_t = Nominal capacity of TXV

- Select K_t-factor according to refrigerant. liquid and evaporating temperature from tables on pages 9-11.
- Determine effective pressure differential across the Thermo[®]-Expansion Valve using condensing pressure. subtract evaporating pressure and all other possible pressure losses. Select $K_{\Delta P}$ -factor from tables on pages 11 ... 12.

Example 1

A valve has to be selected for the following conditions:

Refrigerant	R 22
System cooling capacity	45 kW
Evaporating temperature	+5°C
Lowest condensing temperature	+30°C
Liquid temperature	+25°C
Valve without MOP	

Calculation:

1. Theoretical pressure differential: Lowest condensing pressure is Pc = 11.9 bara at +30°C and evaporating pressure is $P_0 = 5.8$ bara at +5°C Differential pressure is $Pc - P_0 = 11.9 - 5.9 = 6$ bar

 Pressure losses: Across distributor = 1.0 bar Others in piping. solenoid valve. drier. sight glass. fitting. etc. = 0.5 bar Total pressure losses = 1 + 0.5 = 1.5

3. Effective pressure differential across valve: 6.0 - 1.5 = 4.5 bar

4. Correction factors:

Correction factor $K_{\Delta p}$ for the pressure differential 4.5 bar from table on page 9 for R 22 $\Delta p = 4.5$ $K_{\Delta p} = 1.42$

Correction factor K_t for liquid and evaporating temperature from table on page 9 for R 22 at +25°C / 5°C $K_t = 0.89$

- 5. Calculation of nominal capacity $Q_0 \times K_{\Delta p} \times K_t = Qn$ 45 x 1.42 x 0.89 = 56.9 kW. You can select the valve from table on page 6.
- It is a TX6-H06 with a nominal capacity of 61.9 kW.

Α

Dimensioning of Thermo[®]-Expansion Valves for systems with refrigerant R 407C

As opposed to single substances (e.g. R 22. R 134a etc.) where the phase change takes place at a constant temperature / pressure. the evaporation and condensation of zeotropic blend R407C is in a "gliding" form (e.g. at a constant pressure the temperature varies within a certain range) through evaporators and condensers.

 \square

The condensing / evaporating pressure must be determined at saturated temperatures (bubble / dew points) for dimensioning of Thermo[®]-Expansion Valves.

Example 2:

S

System cooling capacity (R407C)	55 kW
Evaporating temperature (dew point)	+5°C
Lowest condensing temperature (bubble)	+30°C
Liquid temperature	+25°C
Valve without MOP	

Н

F

Calculation:

- Theoretical pressure differential: Differential pressure is Pc - P₀ = 13.6 – 5.5 = 8.1 bar
- Pressure losses: Across distributor = 1 bar Others in piping, solenoid valve, drier, sight glass, fitting etc. = 0.6 bar Total pressure losses = 1 + 0.6 = 1.6
- Effective pressure differential across valve: 8.1 - 1.6 = 6.5 bar
- 4. Correction factors: Correction factor $K_{\Delta p}$ for the pressure differential 9.39 bar from table on page 9 for R 407C $\Delta p = 6.5$ bar $K_{\Delta p} = 1.31$ Correction factor Kt for liquid and evaporating temperature from table on page 9 for R 407C at +25°C / +5°C Kt = 0.85
- 5. Calculation of nominal capacity Q_0 x K_{\Delta p} x K_t = Qn 55 x 1.31 x 0.85 = 61.2

You can select the valve from table on page 6. It is a TX6-N06 with a nominal capacity of 66.9 kW.

Dimensioning of Thermo[®]-Expansion Valves for heat pump applications

Example 3:

A heat pump with following design conditions:

Cooling mode

Cooling capacity (R 22)	20 kW
Condensing temperature	+45°C
Evaporating temperature	+5°C
Liquid temerature	45°C
Valve without MOP	

- 1. Theoretical pressure differential: Differential pressure is $Pc - P_0 = 17.3 - 5.8 = 11.5$ bar
- 2. Pressure losses: total pressure losses = 1.6
- 3. Effective pressure differential across valve: 11.5 1.6 = 9.9 bar
- 4. Correction factors: $\Delta p = 9.9$ $K_{\Delta p} = 0.96$ at +5°C and 45°C $K_t = 1.07$
- 5. Calculation of nominal capacity Q_0 x K_{\Delta p} x K_t = Qn 20 x 0.96 x 1.07 = 20.5 kW

You can select the valve from table on page 6

It is a TX6-H03 with a nominal capacity of 23.7 kW.

Heating mode (Reverse flow)

Heating capacity (R 22)	15 kW
Condensing temperature	+30°C
Evaporating temperature	-10°C
Liquid temperature	+30°C

- 1. Theoretical pressure differential: Differential pressure is $Pc - P_0 = 11.9 - 3.5 = 8.4$ bar
- Differential pressure is $PC P_0 = 11.9 = 3.3 = 6.4$ ba
- 2. Pressure losses: total pressure losses = 1.6
- 3. Effective pressure differential across valve: 8.4 - 1.6 = 6.8 bar
- 4. Correction factors: $\Delta p = 6.8$ $K_{\Delta P} = 1.16$ at -10°C and 30°C $K_t = 0.99$
- 5. Calculation of nominal capacity Q_0 x K_{\Delta p} x K_t = Qn 15 x 1.42 x 0.89 = 17.2 kW.

TX6-H03 has sufficient capacity in reverse flow for 17.2 kW.

TX6 **Thermo Expansion Valves** А

S

Η

Ε

ТА

D

Alco Controls

Т

Е

Liquid temperature		00	`				Corr	ectio	n fact	or K _t							Liquid temperature
entering valve		RZ4	2			Eva	aporat	ting te	mpera	ature	°C						entering valve
°C			+20	+ 15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	°C
+ 60			1.24	1.25	1.26	1.28	1.30	1.31	1.38	1.58	1.84	2.16	2.56	3.04	3.55	4.23	+ 60
+ 55			1.16	1.17	1.19	1.20	1.22	1.23	1.29	1.42	1.72	2.02	2.39	2.83	3.30	3.94	+ 55
+ 50			1.10	1.11	1.12	1.13	1.15	1.16	1.21	1.39	1.62	1.89	2.24	2.66	3.10	3.68	+ 50
+ 45			1.04	1.05	1.06	1.07	1.08	1.10	1.15	1.31	1.52	1.79	2.11	2.50	2.91	3.46	+ 45
+ 40			0.99	1.00	1.01	1.02	1.03	1.04	1.09	1.24	1.45	1.69	2.00	2.37	2.75	3.27	+ 40
+ 35			0.94	0.95	0.96	0.97	0.98	0.99	1.03	1.18	1.37	1.61	1.89	2.24	2.60	3.09	+ 35
+ 30			0.90	0.91	0.92	0.93	0.94	0.95	0.99	1.13	1.31	1.55	1.83	2.13	2.47	2.93	+ 30
+ 25			0.86	0.87	0.88	0.89	0.89	0.90	0.94	1.08	1.25	1.46	1.72	2.03	2.36	2.80	+ 25
+ 20			0.83	0.83	0.84	0.85	0.86	0.87	0.90	1.03	1.19	1.40	1.64	1.94	2.25	2.66	+ 20
+ 15				0.80	0.81	0.81	0.82	0.83	0.87	0.99	1.14	1.34	1.57	1.86	2.15	2.55	+ 15
+ 10					0.78	0.78	0.79	0.80	0.83	0.95	1.10	1.28	1.51	1.78	2.06	2.44	+ 10
+ 5						0.75	0.76	0.77	0.80	0.91	1.06	1.23	1.45	1.71	1.98	2.34	+ 5
0							0.73	0.74	0.77	0.88	1.02	1.19	1.39	1.65	1.90	2.25	0
- 5								0.71	0.74	0.85	0.98	1.14	1.34	1.58	1.83	2.17	- 5
- 10									0.72	0.82	0.95	1.10	1.30	1.53	1.77	2.09	- 10
							Corre	ection	facto	or K _{Ap}							
∆p (bar)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	8	9	∆p (bar)
Κ _Δ ρ	4.25	3.00	2.46	2.13	1.90	1.74	1.61	1.50	1.42	1.35	1.28	1.23	1.18	1.14	1.06	1.00	K _Δ p
∆p (bar)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆p (bar)
κ _{Δp}	0.95	0.91	0.87	0.83	0.80	0.78	0.75	0.73	0.71	0.69	0.67	0.66	0.64	0.63	0.61	0.60	K _{Δp}

Liquid temperature		040-	70				Corr	ectio	n fact	or K _t							Liquid temperature
entering valve	Г	(40/				Eva	aporat	ting te	mpera	ature	°C						entering valve
°C			+20	+15	+10	+5	0	-5	-10	-15	-20	-25					°C
+ 55			1.23	1.26	1.28	1.31	1.34	1.37	1.40	1.63	1.98	2.42					+ 55
+ 50			1.13	1.15	1.17	1.19	1.22	1.24	1.27	1.48	1.79	2.18					+ 50
+ 45			1.05	1.06	1.08	1.10	1.12	1.14	1.17	1.35	1.64	2.00					+ 45
+ 40			0.98	0.99	1.01	1.02	1.04	1.06	1.08	1.25	1.52	1.84					+ 40
+ 35			0.92	0.93	0.94	0.96	0.98	0.99	1.01	1.17	1.41	1.71					+ 35
+ 30			0.87	0.88	0.89	0.90	0.92	0.93	0.95	1.10	1.32	1.60					+ 30
+ 25			0.82	0.83	0.84	0.85	0.87	0.88	0.90	1.03	1.25	1.51					+ 25
+ 20			0.78	0.79	0.80	0.81	0.82	0.84	0.85	0.98	1.18	1.43					+ 20
+ 15				0.75	0.76	0.77	0.78	0.80	0.81	0.93	1.12	1.35					+ 15
+ 10					0.73	0.74	0.75	0.76	0.77	0.89	1.07	1.29					+ 10
+ 5						0.71	0.72	0.73	0.74	0.85	1.02	1.23					+ 5
0							0.69	0.70	0.71	0.81	0.98	1.18					0
							Corre	ection	facto	or K _{Ap}							
∆p (bar)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	8	9	∆p (bar)
Κ _Δ ρ	4.78	3.33	2.72	2.36	2.11	1.92	1.78	1.67	1.57	1.49	1.42	1.36	1.31	1.26	1.18	1.11	Κ _{Δp}
∆p (bar)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆p (bar)
K _Δ p	1.05	1.01	0.96	0.92	0.89	0.86	0.83	0.81	0.79	0.76	0.75	0.73	0.71	0.70	0.68	0.67	K _Δ p

Liquid temperature							Corr	ectio	n fact	or K _t							Liquid temperature
entering valve		R1 3	34a			Eva	aporat	ting te	mpera	ature	°C						entering valve
°C			+20	+ 15	+10	+5	0	-5	-10	-15	-20	-25					°C
+ 60			1.27	1.30	1.33	1.36	1.40	1.44	1.48	1.75	2.08	2.46					+ 60
+ 55			1.18	1.21	1.23	1.26	1.29	1.33	1.36	1.60	1.90	2.25					+ 55
+50			1.10	1.13	1.15	1.17	1.20	1.23	1.26	1.48	1.76	2.07					+ 50
+ 45			1.04	1.06	1.08	1.10	1.12	1.15	1.17	1.38	1.63	1.92					+ 45
+ 40			0.98	0.99	1.01	1.03	1.05	1.08	1.10	1.29	1.52	1.79					+ 40
+ 35			0.92	0.94	0.96	0.97	0.99	1.01	1.03	1.21	1.43	1.68					+ 35
+ 30			0.88	0.89	0.91	0.92	0.94	0.96	0.98	1.14	1.35	1.58					+ 30
+ 25			0.83	0.85	0.86	0.87	0.89	0.91	0.92	1.08	1.27	1.49					+ 25
+ 20			0.80	0.81	0.82	0.83	0.85	0.89	0.88	1.02	1.21	1.41					+ 20
+ 15				0.77	0.78	0.79	0.81	0.82	0.84	0.97	1.15	1.34					+ 15
+ 10					0.75	0.76	0.77	0.78	0.80	0.93	1.09	1.28					+ 10
+ 5						0.73	0.74	0.75	0.76	0.89	1.04	1.22					+ 5
0							0.71	0.72	0.73	0.85	1.00	1.17					0
- 5								0.69	0.70	0.82	0.96	1.12					- 5
- 10									0.68	0.79	0.92	1.07					- 10
							Corre	ection	facto	or K _{Ap}							
∆p (bar)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	∆p (bar)
Κ _Δ ρ	3.50	2.48	2.02	1.75	1.57	1.43	1.32	1.24	1.17	1.11	1.06	1.01	0.97	0.94	0.90	0.88	K _{Ap}
∆p (bar)	8.5	9	9.5	10	10.5	11	11.5	12	13	14	15	16	17	18	19	20	∆p (bar)
Κ _Δ ρ	0.85	0.83	0.80	0.78	0.76	0.75	0.73	0.72	0.69	0.66	0.64	0.62	0.60	0.58	0.57	0.55	Κ _Δ ρ

Liquid temperature							Corr	ectio	n fact	or K _t							Liquid temperature
entering valve		R410A			Evaporating temperature °C							C				entering valve	
°C					+ 15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	°C
+ 60					1,50	1,51	1,53	1,54	1,57	1,59	1,85	2,16	2,55	3,03	3,64	4,42	+ 60
+ 55					1,32	1,33	1,35	1,36	1,38	1,40	1,62	1,89	2,23	2,65	3,17	3,84	+ 55
+ 50					1,20	1,20	1,21	1,23	1,24	1,26	1,46	1,70	2,00	2,37	2,83	3,42	+ 50
+ 45					1,09	1,10	1,11	1,12	1,13	1,15	1,33	1,55	1,82	2,15	2,57	3,10	+ 45
+ 40					1,01	1,02	1,03	1,04	1,05	1,06	1,22	1,43	1,67	1,98	2,36	2,84	+ 40
+ 35					0,94	0,95	0,96	0,97	0,98	0,99	1,14	1,32	1,55	1,83	2,18	2,63	+ 35
+ 30					0,89	0,89	0,90	0,91	0,91	0,92	1,06	1,24	1,45	1,71	2,04	2,45	+ 30
+ 25					0,84	0,84	0,85	0,85	0,86	0,87	1,00	1,16	1,36	1,61	1,91	2,30	+ 25
+ 20					0,79	0,80	0,80	0,81	0,81	0,82	0,95	1,10	1,28	1,51	1,80	2,16	+ 20
Correction factor K _{Ap}																	
∆p (bar)	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	8	9	∆p (bar)
Κ _Δ ρ	5,29	3,74	3,05	2,65	2,37	2,16	2,00	1,87	1,76	1,67	1,60	1,53	1,47	1,41	1,32	1,25	K _Δ p
∆p (bar)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆p (bar)
K _{Δp}	1,18	1,13	1,08	1,04	1,00	0,97	0,94	0,91	0,88	0,86	0,84	0,82	0,80	0,78	0,76	0,75	K _{Δp}

TX6 Thermo Expansion Valves

A

S

Η

Τ

Ε

Technical data

Maximum working pressure	
TX6-H/M/N	PS: 31 bar
TX6-Z12/13/14/15/16/17	PS: 42 bar
Compatibility	CFC, HCFC, HFC. Mineral and POE lubricants.
Fluid group	II
Medium temperature range TS	-45 to 65°C
Charges	CFC free

CE-Marking according to PED:	Not required					
Seat leakage	\leq 1% nominal capacity					
Connection	ODF copper					
Power element	Laser welding, stainless steel					
Label	Pin printing					

Ε

Charge Refrigerant		Recommended evaporating temperature range	Maximum bulb temperature		
		°C	°C		
N0	R 407C	-25 to +20	71		
H0	R 22	-45 to +20	71		
M0	R 134a	-25 to +30	88		
N1. MOP 6.9 bar	R 407C	-25 to +14	120		
H1. MOP 6.9 bar	R 22	-45 to +12	120		
M1. MOP 3.8 bar	R 134a	-25 to +10	120		
Z1 MOP 12.1 bar	R 410A	-45 to +14	120		

A

D

Shipping weight and pack quantity TX6

Pack quantity	12 pcs				
Shipping weight	0.65 kg				
	(individual)				

Dimensions

								Bulb size	
Туре	A1	B1	A2	B2	A3	B3	Capillary tube	Diameter	Length
	Ø	mm	Ø	mm	Ø	mm	mm	mm	mm
TX62	1/2" & 12 mm	9	5/8" & 16 mm	13	1/4" & 6 mm				
TX63	1/2" & 12 mm	9	5/8" & 16 mm	13	1/4" & 6 mm				
TX64	5/8" & 16 mm	13	7/8" & 22 mm	19	1/4" & 6 mm	8	1500	13	89
TX65	5/8" & 16 mm	13	7/8" & 22 mm	19	1/4" & 6 mm			(R410A:	(R410A:
TX66	7/8" & 22 mm	19	1-1/8" & 28 mm	23	1/4" & 6 mm			19,2)	59)
TX67	7/8" & 22 mm	19	1-1/8" & 28 mm	23	1/4" & 6 mm				

ALCO CONTROLS is not to be held responsible for erroneous literature regarding capacities, dimensions, applications, etc. stated herein. Products, specifications and data in this literature are subject to change without notice. The information given herein is based on technical data and tests which ALCO CONTROLS believes to be reliable and which are in compliance with technical knowledge of today. It is intended only for use by persons having the appropriate technical knowledge and skills, at their own discretion and risk. Since conditions of use are

outside of ALCO'S control we can not assume any liability for results obtained or damages occurred due to improper application. Our products are designed and adapted for fixed locations

For mobile applications failures may occur.

The suitability for this has to be assured from the plant manufacturer which may include making appropriate tests.

This document replaces all earlier versions.

		Phone:	Fax:
Emerson Electric GmbH & Co OHG	Benelux	+31 (0)77 324 0 234	+31 (0)77 324 0 235
ALCO CONTROLS	Germany, Austria & Switzerland	+49 (0)6109 6059 -0	+49 (0)6109 6059 40
Postfach 1251	France, Greece, Maghreb	+33 (0)4 78 66 85 70	+33 (0)4 78 66 85 71
Heerstraße 111	Italia	+39 02 961 781	+39 02 961 788 888
D-71332 Waiblingen	Spain & Portugal	+34 93 41 23 752	+34 93 41 24 2
Germany	UK & Ireland	+44 (0) 1635 876 161	+44 (0) 1635 877 111
Phone49-7151-509-0	Sweden, Denmark, Norway & Finland	+49 (0)2408 929 0	+49 (0)2408 929 528
Fax49-7151-509-200	Eastern Europe & Turkey	+49 (0)2408 929 0	+49 (0)2408 929 525
	Poland	+48 (0)22 458 9205	+48 (0)22 458 9255
www.emersonclimate.eu	Russia & Cis	+7 495 981 9811	+7 495 981 9816
	Balkan	+385 (0) 1560 38 75	+385 (0) 1 560 3879
	Romania	+40 364 73 11 72	+40 364 73 12 98
	Ukraine	+38 44 4 92 99 24	+38 44 4 92 99 28